:::: MENU ::::
Posts tagged with: arm

Fabless: The Transformation of the Semiconductor Industry

무료로 다운로드 받은 책 : 다운로드
Book Cover Final
Table of Contents
Chapter 1: The Semiconductor Century
Chapter 2: The ASIC Business
In Their Own Words: VLSI Technology
In Their Own Words: eSilicon Corporation
Chapter 3: The FPGA
In Their Own Words: Xilinx
Chapter 4: Moving To The Fabless Model
In Their Own Words: Chips And Technologies
Chapter 5: The Rise Of The Foundry
In Their Own Words: TSMC And Open Innovation Platform
In Their Own Words: GLOBALFOUNDRIES
Chapter 6: Electronic Design Automation
In Their Own Words: Mentor Graphics
In Their Own Words: Cadence Design Systems
In Their Own Words: Synopsys
Chapter 7: Intellectual Property
In Their Own Words: ARM
In Their Own Words: Imagination
Chapter 8: What’s Next For The Semiconductor Industry

WIZnet mbed 라이브러리

W5500 Ethernet 라이브러리를 mbed에 포팅후 W5100,W5200, W5500까지 지원을 하는 라이브러리를 만들어 mbed.org에 업로드했다. 사용법은 간단하다. 라이브러리를 import하고 사용하는 Wiznet칩 또는 모듈에 따라서 wiznet.h에 있는 #define문에서 사용할 칩만 나두고 나머지는 주석 처리하면 된다.



mbed – SeeedArch 프로그래밍하기

SeeedArch

mbed의 플랫폼 중의 하나인 Seeedstudio에서 만든 보드, SeeedArch를 테스트중이다. 이 보드의 스펙은 다음과 같다.

  • mbed enabled
    • online development tools
    • easy to use C/C++ SDK
    • lots of published libraries, projects
  • Standard Arduino Appearance, two Grove connectors
    • available with 3.3V compatible shields
    • a large number of grove modules
  • Drag-n-drop programming
  • NXP LPC11U24 MCU
    • Low power ARM Cortex-M0 Core
    • 48MHz, 32KB Flash, 8KB RAM, 4KB EEPROM
    • USB Device, 2xSPI, UART, I2C

이 보드의 가장 큰 특징은 보드의 형태가 아두이노 보드와 같아서 아두이노 쉴드를 연결할 수 있다.

.png”>800px-Arch_Pinout.jpg.png” width=”560″ height=”455″ />

코딩은 mbed의 웹컴파일러로 하고 다운로드 역시 msd로 잡히는 외장드라이브에 copy를 하면 되는데, Mac이나 Linux에서는 Windows와 달리 drag & drop이 안된다.

프로그래밍 방법 (Mac)

  • 보드의 왼쪽에 있는 리셋 버튼을 길게 누른다. (짧게 누르면 H/W 리셋이고, 길게 누르면 ISP 모드이다.)
  • 그러면 Finder에 CRP DISABLED 라고 스토리지가 잡힌다. Windows에서는 이 폴더에 있는 firmware.bin을 지우고 새로운 firmware.bin을 copy하면 되지만 Mac에서는 Terminal에서 다음과 같이 dd 명령어로 copy한다.
  • dd if=새로운 firmware 파일명 of=/Volumes/CRP\ DISABLD/firmware.bin conv=notrunc

좀 더 쉽게하기위해서 Mac의 Automator를 사용하여 쉘 스크립트를 만든다.

  • dd if=$* of=/Volumes/CRP\ DISABLD/firmware.bin conv=notrunc

Automator_SeeedArch

LED blink 프로그래밍

SeeedArch

관련정보: SeeedStudio WiKi


ARM Cortex M0 – 기술적 개요

일반적인 정보

  • 폰노이만 아키텍처(단일버스 인터페이스)를 가지는 32비트 RISC 프로세서
  • ARMv6 아키텍쳐 : M0, M1(FPGA에 최적화)이 ARMv6 아키텍쳐이며, M3는 ARMv7 아키텍처임. 상위호환이 가능해 M0코드가 M3로 쉽게 이식이 가능.
  • 56개의 명령어: Thumb 명령어 지원, Thumb-2 명령어의 일부 지원

Cortex-M0 block diagram

ARM Cortex-M0의 특징

  • 0.9DMIPS/MHz
  • 프로세스 코어는 3단계 파이프라인
  • NVIC: 프로그램 가능한  4개의 서로 다른 우선 순위 레벨을 가질 수 있으며, 32개까지의 interrrupt request를 받을 수 있다.
  • WIC (Wakeup Interrupt Controller)는 옵션
  • OS지원을 위한 System Tick지원

ARM Cortex-M0의 장점

  • 에너지 효율성 – 슬립모드와 연계되어 있다. 즉 평소에는 슬립모드에 있다가 인터럽트가 발생을 하면 빨리 처리하고 다시 슬립모드로 들어감.
  • 8, 16비트의 제약을 극복 – 32비트 linear address 사용(더 큰 메모리의 사용 가능), 더 큰 스텍사용(참고로 8051은 256바이트), 향상된 명령어 셋으로 더 작은 크기의 코드 가능( 참고로 8051은 항상 ACC를 사용해야 함)

저전력을 가능하게 하는 요소들

  • 적은 게이트수 : 최소 설정으로는 12K, 일반적으로 17~25K
  • 높은 효율성 : 0.9 DMIPS/MHz (80486DX가 0.81 DMIPS/MHz 였다는…)
  • 슬립모드 : WIC(Wakeup Interrupt Controller), 2 개의 슬립모드: WFI(Wait for Interrupt ), WFE(Wait for Event)
  • 로직셀 향상 : Ultra Low Leakage 로직 셀 라이브러리 도입

average current

즉 물리적으로 누설전류가 적은 로직셀, 최적화된 게이트 수를 통해 성능이 좋은 칩으로 슬립모드를 제공하므로 저전력이 가능하다.

관련자료 다운로드


ARM Cortex M0 – 아키텍처

Programmer’s Model

CortexM0 Processor mode

ARMv6-M 아키텍처에서는 쓰레드 모드와 핸들러 모드가 거의 같다. 유일한 차이는 쓰레드 모드에서는 CONTROL이라는 특별 레지스터의 설정으로 shadow된 스텍포인터를 사용한다는 것이다.

레지스터

201402061550.jpg

로드 스토어 아키텍쳐: 메모리에 있는 데이터를 처리하기 위해 이 데이터는 메모리로 부터 레지스터 뱅크의 레지스터에 옮겨져서 내부 프로세서에 의해 처리되고, 이것이 다시 메모리에 쓰여진다.
Cortex-M0는 13개의 32비트 범용 레지스터와 몇개의 특별(special)레지스터를 가진다.

R0-R12

범용 레지스터이며, 대부분의 16비트 Thumb 명령어들은 R0-R7, 하위(Low)레지스터만 액세스 가능하다. 이 레지스터들은 리셋시에 초기값이 정해져 있지 않다.

R13, SP (스텍 포인터)

2개의 스텍포인터가 존재하며, Push, Pop은 32비트 명령이기 때문에 스텍포인터는 항상 32비트의 최하위 2 비트는 항상 0이다.

-. MSP (SP_main) : 메인 스텍 포인터 – 리셋시에 사용되는 기본 설정 스텍포인터이며, 익셉션 핸들러가 실행될 때도 사용이 됨, 초기값은 스타트업 동작시 벡터테이블에서 처음 32비트 워드를 가져온다.
-. PSP (SP_process) : 프로세스 스텍 포인터 – 쓰레드 모드(익셉션을 처리하지 않을 때)에서만 사용됨, 초기값이 정해지지 않음.

R14, LR (링크 레지스터)

함수 호출 또는 서브루틴의 복귀주소를 저장하기 위해 사용이 된다.

R15, PC (프로그램 카운터)

읽기시에는 파이프라인설계 특성 때문에 현재 명령어 주소 + 4값이 읽혀진다.

PSR, 프로그램 상태 레지스터

이 레지스터는 다음 3개의 레지스터들로 구성이 된다.

-. Application PSR (APSR) : 조건 분기를 위해 N(음수), Z(제로), C(캐리 또는 바로우), V(오버플로우)
-. Interrupt PSR (IPSR) : 현재 실행중인 ISR(인터럽트 서비스 루틴)의 번호를 표시한다.
-. Execution PSR (EPSR) : Cortex-M0에서 T비트는 항상 1 (Thumb 상태를 표시), 만약 이 비트가 0이면 Hard Fault 익셉션이 발생한 것이다.

201402061613.jpg

이 세개의 레지스터는 xPSR 라 불리는 하나의 레지스터를 통해 액세스 된다.

PRIMASK: 인터럽트 마스크 특별 레지스터

201402061621.jpg

PRIMASK를 설정하면 NMI나 Hard Fault 익셉션을 제외한 모든 인터럽트를 차단한다.

CONTROL: 특별레지스터

201402061622.jpg

리셋이 된 후(Active stack pointer = 0)에는 MSP가 사용이되지만 , 쓰레드 모드에서 Active stack pointer가 1로 되면 PSP가 선택이 된다. 간단한 응용에서는 MSP만 사용이 되지만 OS가 사용이 될 경우 PSP가 사용이 되는 데 이것은 빠른 Context switching을 위한 것이다. MSP의 초기값은 프로그램 메모리의 시작 부분에 저장이 되지만 PSP의 초기값은 정해지지 않으며, 사용하기전에 프로그램에 의해 초기화가 되야 한다.

메모리 시스템의 개요

201402061628.jpg

스텍 메모리 동작

  • First-in, Last-out 동작 메카니즘
  • Push – 스텍에 메모리를 저장, 스텍 포인터의 주소는 감소한다.
  • Pop – 메모리에 저장된 데이터를 복구, 스텍 포인터의 주소는 증가한다.
  • Cortex-M0의 경우 full descending 스텍 모델 – 이것은 스텍 포인터가 항상 스텍 메모리의 마지막에 저장된 데이터를 가리킨다는 의미인다.
  • Push를 했는데 Pop을 하지 않을 경우 스텍 오버플로우 발생

익셉션과 인터럽트

201402061654.jpg
Vector table

NVIC

  • Flexible 인터럽트 관리: s/w로 인터럽트를 enable / disable 가능, Pending 상태를 set / clear가능
  • 중첩된 인터럽트 지원 – 선점형(preemption)
  • 벡터 방식의 익셉션 진입
  • 인터럽트 마스팅

디버그 시스템

Halt mode debug, stepping, register access를 제공하고, BPU(Breakpoint Unit), DWT(Data Watch point)같은 디버그 기능을 제공한다.JTAG 연결(nTRST, TCK, TDI, TMS, TDP등 5핀 사용)과 Serial-Wire 연결(Serial Write Clock, Serial Write Data등 2핀 사용)은 동일한 컨넥터를 사용이 가능하다. 즉 TCK와 Serial Write Clock이 공유되고, TMS와 Serial Write Data핀이 공유되며 나머지는 NC이다.

Startup Sequence

IMG_0003

프로세서가 리셋이 되면 다음과 같은 순서로 동작을 한다.

1. 0x00000000 번지에 저장이 되어 있는 MSP의 초기값을 읽는다. MSP의 초기값 = 스텍의 시작 번지

2. 0x00000004 번지에 저장이 되어 있는 리셋 벡터를 읽는다.

3. 리셋 벡터에 저장된 번지의 명령어를 패치한다.

만약 부트코드가 0x000000C0 번지부터 시작을 하면, Thumb 코드임을 나타내기 위하여 최하위 비트를 1로 설정한 값이 리셋 벡터에 저장이 되어 있어야 한다.


ARM Cortex M0 – 소개

ARM사는 Acorn Computer Group, Apple 컴퓨터, VLSI Technology의 합작투자회사로 1990년에 Advanced RISC Machine Ltd라는 이름으로 설립

ARM Cortex-M0의 특징

  • 적은 게이트수: 12,000
  • 저전력 기능 지원 및 높은 에너지 효율성 – 0.9 DMIPS/MHz
  • 사용하기 쉬운 인터럽트 우선순위 제어를 가진 내장형 인터럽트 콘트롤러
  • Low interrupt latency, 타이밍이 확정적(deterministic)
  • Thumb 지원- 높은 코드 밀도

ARM 프로세서와 아키텍처

  • 2006년에 Cortex-M3 (ARMv7-M 아키텍쳐) 출시
  • Cortex-M0는 ARMv6-M 아키텍쳐기반
  • ARMv6-M 아키텍쳐는 ARMv7-M의 메모리 맵,  프로그래머 모델과 익셉션 모델, Thumb2 시스템과 ARMv6의 Thumb 명령어 셋 그리고 CoreSight Debug 아키켁쳐를 결합한 형태이며, 여기에 저전력에 특화된 설계로 나온 것이 M0이며, FPRGA 특화된 특성을 넣은 것이 M1이다.
arm processor architecture

ARM 프로세서 아키텍처의 진화


ARM Techcon 2013, ARM Technology Symposia 2013

지난 10월 29일부터 3일간 미국 캘리포니아 산타클라라 컨벤션 센터에서 열린 “ARM Techcon 2013” 행사에 참석해서 관련 글을 블로터넷에 기고를 했다. 보낸 원고에서 몇가지 영어 표현들이 한글로 바뀌고 제목들이 추가로 달렸는데, 에디터의 손을 거치니 좀 나아지는 것 같다. 한국에서는 IoT(Internet of Things)가 사물인터넷으로 번역되는 것이 좀 이상하지만…

기고문:  “사물인터넷” 눈독 들이는 ARM

최근  ARM CEO인 Simon Segars의 키노트가 유투브에 올라와 있다.

당시 3일 일정의 모든 세션을 들을 수 있는 티켓을 구매(약 1500불)해서 들었는데, ARM에서는 한국에서도  비슷한 행사를 개최했다.

ARM_Symposia _2013

그런데 이 행사는 ARM Techcon보다는 축소된 내용으로 개괄적인 내용만 다뤄졌고, 한국의 파트너들의 발표를 제외하면 당시 행사에서 발표한 슬라이드를 그대로 사용해서 발표를 했다. 지난번에 미국에서 만난 ARM사의 Diya씨가 이번에 한국에서도 발표를 했는데, 발표가 끝나고 물어보니 한국, 대만, 중국, 일본, 유럽, 인도를 거쳐서 미국에서 고객 미팅도 하고 내년에나 집(영국)에 간다고 한다. -_-;;

Diya씨는 Cortex-M시리즈에 대한 일반적인 내용을 발표를 했다.

IMG_0005_2

이번 발표도 미국서와 마찬가지로 주제는 IoT이다. mbed에 대한 소개가 좀 미흡했지만 국내에서도 이 플랫폼을 가지고 IoT를 촉진시키기 위한 커뮤니티의 확산에 노력을 하지 않을까 생각이 된다.

전시된 제품 중 흥미로운 것은 Sphero Ball에 사용된 칩이 STMicro의 STM32F0인것과, Nike_Fuel Band에  STM32L151QCH 칩이 사용이 된 것이 흥미로웠다.

IMG_0010_2

IMG_0011_2

관련 사진: http://www.flickr.com/photos/jbkim/sets/72157637889539275/

 


6LowPAN Network Processor – CC1180

CC118은 6LowPAN chip으로 검색을 하면 나오는 TI의 칩이다. 데이터시트를 보니 최근 ARM에 인수된 Sendinode의 솔루션이 칩에 들어가 있다. MCU와의 인터페이스는 UART이다.

데이터시트 다운로드는 아래 링크에서… 

CC1180

 


CMSIS-DAP 란?

CMSIS

Cortex Microcontroller Software Interface Standard의 약자. 즉 다양한 칩 벤더가 Cortex 시리즈의 IP를 라이센스해가면서 하드웨어 독립적인 표준화된 소프트웨어 인터페이스가 필요하게 됨.  이것은 다음을 포함한다. 스펙은 ARM에 사용자 등록을 하면 받을 수 있다. https://silver.arm.com/browse/CMSIS

  • CMSIS-CORE: provides an interface to Cortex-M0, Cortex-M3, Cortex-M4, SC000, and SC300 processors and peripheral registers
  • CMSIS-DSP: DSP library with over 60 functions in fixed-point (fractional q7, q15, q31) and single precision floating-point (32-bit) implementation
  • CMSIS-RTOS API: standardized programming interface for real-time operating systems for thread control, resource, and time management
  • CMSIS-SVD: System View Description XML files that contain the programmer’s view of a complete microcontroller system including peripherals

CMSIS-DAP

CMSIS-DAP의 DAP는 Coresight Debug Access Port의 약자이다. 구체적인 스펙은 역시 ARM에 사용자 등록을 하면 받을 수 있다. https://silver.arm.com/browse/CMSISDAP 아래 그림은 3가지 mbed모듈에 어떻게 CMSIS-DAP가 연결이 되어 있는지를 보여준다.

cmsis-dap-6

여기서 onboard interface의 기능은 다음 그림으로 설명이 된다. 즉 호스트와는 USB로 연결이 되어, Mass Storage Device 프로그래밍, CMSIS-DAP 로 디버깅, 가상 시리얼 포트를 제공한다.

onboard-if-block

mbed의 HDK에 이것이 포함이 되어서 커스텀 디자인을 지원하지만 현재는 NXP LPC1768, LPC11U24 and KL25Z  이 3가지 칩만 지원을 하고, 몇 벤더(NXP, Freescale)만 선택을 했다는…

The mbed HDK currently supports the NXP LPC1768, LPC11U24 and KL25Z. Due to an unexpectedly high demand for the HDK, we are choosing a few lead partners to work with to iron out any issues that may arise before we make it freely downloadable.

출처: http://mbed.org/handbook/mbed-HDK#mbed-onboard-interface

CMSIS-DAP firmware

중요한 것은 인터페이스 칩의 firmware인데, 이것도 위 사이트에서 다운로드가 가능하며 하드웨어 요구사항은 다음과 같다.

Hardware Requirements

The CMSIS-DAP Firmware is designed for Debug Units that fulfill the following hardware requirements:

  • Cortex-M0, Cortex-M0+, Cortex-M3, or Cortex-M4 processor-based microcontroller.
  • CPU Clock: 48MHz or higher; Microcontroller must have a SYSTICK timer.
  • RAM: 8KB or more; Flash ROM: 16KB or more.
  • Full-speed or High-speed USB Device Peripheral.
  • 7 standard I/O pins for JTAG/SWD Device Interface.
  • optional 2 I/O pins for Status LEDs.

추가자료

  • SeeedStudio의 경우는 보드에 타겟칩만 있는데, 이경우는 보드 2개를 연결해서 프로그래밍을 하기도 한다. 관련 정보
  • NXP에서 제공하는 app. note:  Porting the CMSIS-DAP debugger to the Cortex-M0 platform  

Pages:12