:::: MENU ::::
Posts tagged with: 3d printer

PID 튜닝

Reprap 기반의 코드에 적용되어 있는 PID 를 튜닝하는 방법은 다음과 같이 PID Auto-tune을 사용해서 상수값 Kp, Ki, Kd값을 정하고 Configuration.h에 설정을 한다.

M303 E0 S210 C8

위 코드의 의미는 타겟온도 210도로 하고 8번의 사이클을 거쳐서 값을 정하는것. 그러면 다음과 같이 값이 나온다.

bias: 92 d: 92 min: 196.56 max: 203.75
Ku: 32.59 Tu: 54.92
Clasic PID
Kp: 19.56
Ki: 0.71
Kd: 134.26
PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h

Configuration.h 파일에 설정후 컴파일을 하는 대신에 다음과 같이 M301커멘드로 테스트가 가능하다.

M301 P19.56 I0.71 D134.26

PID Auto-tune

  • The PID test doesn’t use a PID control loop to control the temperature! It shouldn’t matter what values you have stored when you run the autotune. Instead, the autotune function runs the heater in “bang-bang” mode, leaving the heater on for an extended period of time, and then off for an extended period of time, and simply observing the thermal behavior in response to heating and cooling.
  • Each cycle in the autotune run is a test where the controller cycles the heater, intentionally overshooting the target value for 5 seconds and observing how far up it goes, and how long it takes to coast back down to the target temperature. Once below the target temperature for 5 seconds, it observes how far the temp fell, and then cycles the heater on for another run at the target.
  • The first three cycles calculate a “bias” to dial in the level of maximum power that will be used for the remainder of the cycle/tests. You will get to see those bias numbers, but there’s not much you can do with them. You will not get PID parameters from these initial cycles.
  • The fourth and subsequent tests still overshoot by 5 seconds and undershoot by 5 seconds, but this time the observed duration of the heat cycle, and the min and max temperatures reached, are put through the mathematical formulas described in the Ziegler–Nichols PID tuning method. This is a mathematical way to determine PID constants that perform acceptably in many systems. Values for the three parameters Kp, Ki, and Kd will be displayed for the cycle, and a new cycle will begin.
  • After all the test cycles are finished, you can average the values you get from each of these cycles and use those as your baseline parameters.

Kp, Ki, Kd의 의미

  • The proportional (P) constant Kp is in counts/C, representing the change in the softPWM output per each degree of error.
  • The integral (I) constant Ki in counts/(C*s) represents the change per each unit of time-integrated error.
  • The derivative (D) constant Kd in counts/(C/s) represents the change in output expected due to the current rate of change of the temperature.
  • Kp is the “proportional” term. The further off target you are, the more power this term contributes.
  • Ki is the “integral” term. This term contributes more control input as the accumulated offset over time between measured and target temperatures increases. In other words the longer you’ve been off target, the more input this term will contribute in the direction of the target (could be more or less heater power).
  • Kd is the “derivative” term. This term allows the controller to “predict” or look ahead of the current temperature to slow the rate of change down and let the measured temperature creep up on the target. Mathematically speaking it attempts to minimize the slope of the temperature curve with respect to the target.

수동으로 조정

  • if it overshoots a lot and oscillates, either the integral gain needs to be increased or all gains should be reduced
  • Too much overshoot? Increase D, decrease P.
  • Response too damped? Increase P.
  • Ramps up quickly to a value below target temperature (0-160 fast) and then slows down as it approaches target (160-170 slow, 170-180 really slow, etc) temperature? Try increasing the I constant.
  • if the temperature is getting too hot before settling down, increase Kd and decrease Kp (more creeping up on the temperature and less muscling it around)
  • if the temperature tapers off just under the target and never quite reaches it, decrease Kd and increase Ki (less creeping up alongside the target, and more correction for cumulative offset) Increasing Ki means that cruising just a hair under the target for a long time will cause Ki to gradually put more power into the heater until it reaches the target. A higher Kd would fight this process by decreasing power to get the measured temperature curve parallel to the target temperature line.
  • if the temperatures are taking a long time to settle, oscillating or hunting indefinitely, decrease Ki and increase Kd (less agitation from cumulative error, and more gliding into alignment with the target); alternatively try decreasing all three terms… the PID equivalent of taking some deep breaths and relaxing the amount of control you’re exerting

참고



Cura 2.1 open beta 버전 빌드

Ultimaker에서 기존 Cura와 다른 GUI를 가진 Cura를 개발해서 베타버전을 내놓았다. 이유는

This is the new, shiny frontend for Cura. daid/Cura is the old legacy Cura that everyone knows and loves/hates.
We re-worked the whole GUI code at Ultimaker, because the old code started to become a unmaintainable

사실 daid의 Cura의 경우 맥에서의 빌드는 본인도 hell이라고 표현을 하는데, 이번 베타버전의 큐라를 빌드해 보니 스무스하게 빌드가 된다. 단 빌드 시간은 엄청나게 오래 걸린다.

Mac에서의 빌드 방법

필요한 파일들 설치

  • xcode 설치
  • cmake 설치 – brew install cmake
  • openssl 설치 – brew install openssl
  • brew link openssl –force
  • gcc 설치 – brew install gcc

빌드

  • git clone [email protected]:Ultimaker/cura-build.git
  • cd cura-build
  • mkdir build
  • cd build
  • cmake ..
  • make

추가적인 머신 설정 방법

Json 파일을 만들어야 하는데, 맥에서의 파일 위치는 /Users/AteamRnd/Downloads/Cura.app/Contents/Resources/cura/resources/machines

베타버전의 메뉴얼

다른 OS에서의 빌드는 링크를 참고.

관련 내용: https://ultimaker.com/en/resources/20511-change-machine-settings


MOD-t에서 Cura 사용하기

Indiegogo에서 얼리버드로 $239에 구매한 MOD-t

MOD-t뿐만 아니라 Cura에 기본적으로 설정이 되어 있지 않은  3D 프린터는 이와 같은 방법으로 기기를 추가하고, 프로파일을 추가할 수 있다.

  • 메뉴에서 Machine > Add new machine…을 선택
  • Next버튼을 누르고 맨 밑에 있는 Other를 선택후 다시 Next를 선택
  • 기기의 이름, 빌드 사이즈, 노즐 사이즈, 베드의 센터를 기입하고 Finish를 한다.

  • File > Open profile…을 클릭후 첨부된 profile을 로드한다.
  • 프린팅을 할때는 desktop app에서 “Advanced Mode”를 선택하고, 좀 전에 설정한 큐라에서 슬라이싱한 Gcode를 선택한다.


ANATOMY OF A 3D PRINTER

ANATOMY OF A 3D PRINTER

MatterHackers의 블로그 기사로 초보자들이 3D 프린터를 이해하는데 도움이 될 듯.

Hotend – All Metal vs PEEK/PTFE
By not using any plastic insulators in their construction, all metal hot ends are able to reach much higher temperatures and print a wider range of materials. However, they require active cooling.

Hotend – Heat Sink / Hot End Fan
This ensures that heat does not travel up the plastic and melt it prematurely before it reaches the nozzle. This phenomenon is called heat creep and it causes jams, especially with PLA. This fan should be running whenever the hot end is warm.

Prt_BD

그 밖에 괜찮은 자료는

 


ZeroPi – Arduino and Raspberry Pi compatible development kit

ZeroPi는 Arduino and Raspberry Pi 호환 개발보드

photo-original

참고자료: https://www.kickstarter.com/projects/1204283/zeropi-arduino-and-raspberry-pi-compatible-develop

 



열전도율

열역학 제2법칙에 따르면, 열은 항상 더 낮은 온도 방향으로 흐른다. 즉 뜨거운 부분의 열이 차가운 부위로 전달되는데, 이 정도의 차이는 열전도율에 따라 달라진다.

열전도율 기본 공식
Q=k*A(ΔT/L)
Q=열류량(W)

여기서
A=시료의 면적(㎡)
L=시료두께(m)
ΔT=온도차(K,°C와 동일)

즉 면적이 넓고 두께가 얇을 수록 열이 더 빨리 전달이 됨

 

다이아몬드의 열전도율이 가장 높은 것이 인상적이다. 순동도 괜찮지만 가공성 및 비용을 따지면 알루미늄일듯.

참고: http://ko.wikipedia.org/wiki/%EC%97%B4%EC%A0%84%EB%8F%84%EC%9C%A8


3D 프린팅용 오픈소스 소프트웨어

3D 프린팅을 위해서는 4가지 소프트웨어가 필요하다.

  1. 프린팅할 물체를 모델링 하는 소프트웨어
  2. 이 3D 모델을 각 레이어 별로 잘라주는 슬라이스 소프트웨어 – STL파일을 G코드로 변환
  3. G 코드를 프린터로 전송해 주는 프로그램 – 보통 3D printing host software라고 부른다.
  4. 3D 프린터에 내장되어 있는 펌웨어

일단 1번은 디자인을 위한 것이고 4번은 기기에서 돌아가는 소프트웨어 이니 논외로 하고 슬라이서 프로그램과 호스트 프로그램을 살펴보자. 일반적으로 이 두 프로그램이 합쳐져 있다. 즉 호스트 프로그램에서 슬라이서 프로그램을 가져다 쓰는 형태이다.

3D 슬라이서 프로그램

Slic3r

Skeinforge

KISSlicer

2013년에 포스팅된 메이크진의 블로그에 보면 Slic3r가 50%이상 사용이되고 Skeinforge, KISSlicer 가 각각 10%대로 사용이 된다.

3D  프린팅 호스트 프로그램

Repetier-Host

PrintRun

ReplicatorG

 

Repetier-Host가 약 33%, PrintRun이 약 18%, ReplicatorG는 5%정도 사용이 되는데 ReplicatorG는 2012년에 이후로는 업데이트가 없다.

이 외에 Ultimaker 사에서 나온 Cura가 있는데, 인터페이스가 간단하고 자체 엔진을 사용한다. 물론 오픈소스이고 코드가 공개되어 있다.


Pages:12